Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(9): 1698-1703, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731698

RESUMO

The synthesis of the first dimeric inhibitor of E. coli dihydrodipicolinate synthase (DHDPS) is reported herein. Inspired by 2,4-thiazolidinedione based ligands previously shown to inhibit DHDPS, a series of dimeric inhibitors were designed and synthesised, incorporating various alkyl chain bridges between two 2,4-thiazolidinedione moieties. Aiming to exploit the multimeric nature of this enzyme and enhance potency, a dimeric compound with a single methylene bridge achieved the desired outcome with low micromolar inhibition of E. coli DHDPS observed. This work highlights the continued importance of investigation into DHDPS as an antibacterial target. Furthermore, we demonstrate the design of dimeric ligands can provide a promising strategy to improve potency in the search for novel bioactive compounds.

2.
Commun Biol ; 6(1): 550, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217566

RESUMO

Herbicide resistance represents one of the biggest threats to our natural environment and agricultural sector. Thus, new herbicides are urgently needed to tackle the rise in herbicide-resistant weeds. Here, we employed a novel strategy to repurpose a 'failed' antibiotic into a new and target-specific herbicidal compound. Specifically, we identified an inhibitor of bacterial dihydrodipicolinate reductase (DHDPR), an enzyme involved in lysine biosynthesis in plants and bacteria, that exhibited no antibacterial activity but severely attenuated germination of the plant Arabidopsis thaliana. We confirmed that the inhibitor targets plant DHDPR orthologues in vitro, and exhibits no toxic effects against human cell lines. A series of analogues were then synthesised with improved efficacy in germination assays and against soil-grown A. thaliana. We also showed that our lead compound is the first lysine biosynthesis inhibitor with activity against both monocotyledonous and dicotyledonous weed species, by demonstrating its effectiveness at reducing the germination and growth of Lolium rigidum (rigid ryegrass) and Raphanus raphanistrum (wild radish). These results provide proof-of-concept that DHDPR inhibition may represent a much-needed new herbicide mode of action. Furthermore, this study exemplifies the untapped potential of repurposing 'failed' antibiotic scaffolds to fast-track the development of herbicide candidates targeting the respective plant enzymes.


Assuntos
Arabidopsis , Herbicidas , Humanos , Herbicidas/farmacologia , Di-Hidrodipicolinato Redutase/farmacologia , Lisina , Plantas Daninhas , Bactérias
3.
Proc Natl Acad Sci U S A ; 120(15): e2208737120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011186

RESUMO

The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Enterococos Resistentes à Vancomicina , Vancomicina/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
4.
FEBS J ; 290(4): 974-987, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36029163

RESUMO

Scribble (Scrib) is a highly conserved cell polarity regulator that harbours potent tumour suppressor activity and plays an important role in cell migration. Dysregulation of polarity is associated with poor prognosis during viral infections. Human T-cell lymphotrophic virus-1 (HTLV-1) encodes for the oncogenic Tax1 protein, a modulator of the transcription of viral and human proteins that can cause cell cycle dysregulation as well as a loss of genomic integrity. Previous studies established that Scribble interacts with Tax1 via its C-terminal PDZ-binding motif (PBM), leading to aggregation of polarity regulators and subsequent perturbation of host cell adhesion, proliferation, and signalling. Using isothermal titration calorimetry, we now show that all four PDZ domains of Scribble bind to Tax1 PBM. We then determined crystal structures of Scribble PDZ1, PDZ2 and PDZ3 domains bound to Tax1 PBM. Our findings establish a structural basis for Tax1-mediated subversion of Scribble-mediated cell polarity signalling and provide the platform for mechanistic studies to examine Tax1 induced mislocalization of Scribble and the associated changes in cellular architecture and subsequent tumorigenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Domínios PDZ , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Linfócitos T , Vírus Oncogênicos , Ligação Proteica
5.
Bioorg Med Chem Lett ; 80: 129086, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423825

RESUMO

The looming threat of a "post-antibiotic era" has been caused by a rapid rise in antibacterial resistance and subsequent depletion of effective antibiotic agents in the clinic. An efficient strategy to address this shortfall lies in the reengineering of pre-existing and commercially available antibiotic drugs. This is exemplified by dimerization, a design concept in which two pharmacophores are covalently linked to form a new chemical entity. The cage hydrocarbons cubane (1), bicyclo[2.2.2]octane (BCO) (2), adamantane (3), and bicyclo[1.1.1]pentane (BCP) (4) present themselves as an attractive family of linkers in this regard. In this report, all four hydrocarbon cages were employed as linkers in a series of dimers based on the commercially available antibiotics trimethoprim and tedizolid. A detailed synthetic roadmap for the protection and deprotection of each pharmacophore is outlined. Several members of the trimethoprim series showed activity on par with that of their trimethoprim progenitor, although this was not the case for the tedizolid series. The design strategy outlined herein highlights the utility of the group as a platform for the rapid and modular construction of future novel antibiotics.


Assuntos
Oxazolidinonas , Trimetoprima , Trimetoprima/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hidrocarbonetos
6.
FEBS Lett ; 596(18): 2409-2417, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35993565

RESUMO

We recently reported that the membrane-associated progesterone receptor (MAPR) protein family (mammalian members: PGRMC1, PGRMC2, NEUFC and NENF) originated from a new class of prokaryotic cytochrome b5 (cytb5 ) domain proteins, called cytb5M (MAPR-like). Relative to classical cytb5 proteins, MAPR and ctyb5M proteins shared unique sequence elements and a distinct heme-binding orientation at an approximately 90° rotation relative to classical cytb5 , as demonstrated in the archetypal crystal structure of a cytb5M protein (PDB accession number 6NZX). Here, we present the crystal structure of an archaeal cytb5M domain (Methanococcoides burtonii WP_011499504.1, PDB:6VZ6). It exhibits similar heme binding to the 6NZX cytb5M , supporting the deduction that MAPR-like heme orientation was inherited from the prokaryotic ancestor of the original eukaryotic MAPR gene.


Assuntos
Citocromos b , Receptores de Progesterona , Animais , Archaea/genética , Archaea/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Citocromos b5/genética , Heme/metabolismo , Mamíferos , Ligação Proteica , Receptores de Progesterona/genética
7.
Dalton Trans ; 51(32): 12056-12070, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35876319

RESUMO

A series of gold(I) (4a-4h, 5a-5b) and silver(I) (3a-3h) complexes of 1,2,4-triazolylidene and imidazolylidene based N-heterocyclic carbene ligands were prepared and the antibacterial activities of these complexes have been evaluated. The complexes were characterised using 1H-NMR, 13C-NMR, HRMS and in the cases of 3a, 3c, 4b and 5b by X-ray crystallography. The gold(I) complexes with phenyl substituents (4a-4d) were found to have potent antibacterial activity against Gram-positive bacteria, with the complexes of the 1,2,4-triazolylidene ligands being more active (4c, MIC = 4-8 µg mL-1 against Enterococcus faecium and 2 µg mL-1 against Staphylococcus aureus) than the analogous imidazolylidene complexes 4a and 4b (4a, MIC = 64 µg mL-1 against E. faecium and 2-4 µg mL-1 against S. aureus). Two of the silver(I) complexes have promising antibacterial activity against Acinetobacter baumannii (3f, MIC = 2-4 µg mL-1 and 3g, MIC = 2 µg mL-1). Silver(I) complex 3f and gold(I) complex 4c were tested against multi-drug resistant bacterial strains and high levels of antibacterial activity were observed. The potential for antibacterial resistance to develop against these metal containing complexes was investigated and significantly, no resistance was observed upon continuous treatment, whilst resistance was developed against the widely used broad-spectrum antibiotic ciprofloxacin in the same bacterial strains, under the conditions tested. The solution and gas phase stabilities of the complexes have been investigated using a combination of 1H-NMR, HRMS and detailed computational mechanistic studies were undertaken to gain insights into the possible decomposition reactions for silver complexes in aqueous solution.


Assuntos
Complexos de Coordenação , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Ouro/química , Imidazóis/farmacologia , Metano/análogos & derivados , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia , Staphylococcus aureus , Triazóis
8.
IUBMB Life ; 74(12): 1232-1252, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35880704

RESUMO

Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.


Assuntos
Antibacterianos , Uridina Difosfato N-Acetilglicosamina , Uridina Difosfato N-Acetilglicosamina/metabolismo , Antibacterianos/farmacologia , Peptidoglicano
9.
Elife ; 112022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723913

RESUMO

Herbicides with novel modes of action are urgently needed to safeguard global agricultural industries against the damaging effects of herbicide-resistant weeds. We recently developed the first herbicidal inhibitors of lysine biosynthesis, which provided proof-of-concept for a promising novel herbicide target. In this study, we expanded upon our understanding of the mode of action of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act as proherbicides. Here, we show this is not the case. We report an additional mode of action of these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to include a weed species of global significance.


Assuntos
Herbicidas , Herbicidas/farmacologia , Lisina , Plantas Daninhas , Controle de Plantas Daninhas
10.
Front Immunol ; 12: 666813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759915

RESUMO

FcγR activity underpins the role of antibodies in both protective immunity and auto-immunity and importantly, the therapeutic activity of many monoclonal antibody therapies. Some monoclonal anti-FcγR antibodies activate their receptors, but the properties required for cell activation are not well defined. Here we examined activation of the most widely expressed human FcγR; FcγRIIa, by two non-blocking, mAbs, 8.26 and 8.2. Crosslinking of FcγRIIa by the mAb F(ab')2 regions alone was insufficient for activation, indicating activation also required receptor engagement by the Fc region. Similarly, when mutant receptors were inactivated in the Fc binding site, so that intact mAb was only able to engage receptors via its two Fab regions, again activation did not occur. Mutation of FcγRIIa in the epitope recognized by the agonist mAbs, completely abrogated the activity of mAb 8.26, but mAb 8.2 activity was only partially inhibited indicating differences in receptor recognition by these mAbs. FcγRIIa inactivated in the Fc binding site was next co-expressed with the FcγRIIa mutated in the epitope recognized by the Fab so that each mAb 8.26 molecule can contribute only three interactions, each with separate receptors, one via the Fc and two via the Fab regions. When the Fab and Fc binding were thus segregated onto different receptor molecules receptor activation by intact mAb did not occur. Thus, receptor activation requires mAb 8.26 Fab and Fc interaction simultaneously with the same receptor molecules. Establishing the molecular nature of FcγR engagement required for cell activation may inform the optimal design of therapeutic mAbs.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Sítios de Ligação , Epitopos/genética , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Mutação , Fosforilação , Ativação Plaquetária , Ligação Proteica , Receptores Fc , Receptores de IgG/genética
11.
Bioorg Med Chem ; 52: 116518, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34826680

RESUMO

Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Hidroliases/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidroliases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
12.
Elife ; 102021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313586

RESUMO

Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS was identified using a high-throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide-resistant weeds.


Assuntos
Arabidopsis/efeitos dos fármacos , Herbicidas/química , Herbicidas/farmacologia , Lisina/biossíntese , Hidroliases/metabolismo , Plantas Geneticamente Modificadas
13.
Plant Cell ; 33(8): 2794-2811, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34235541

RESUMO

Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.


Assuntos
Concanavalina A/química , Concanavalina A/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Precursores de Proteínas/metabolismo , Sítios de Ligação , Canavalia/enzimologia , Domínio Catalítico , Dicroísmo Circular , Concanavalina A/genética , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Concentração de Íons de Hidrogênio , Metilmanosídeos/metabolismo , Modelos Moleculares , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluções
14.
FEBS J ; 288(16): 4973-4986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586321

RESUMO

Lysine biosynthesis in plants occurs via the diaminopimelate pathway. The first committed and rate-limiting step of this pathway is catalysed by dihydrodipicolinate synthase (DHDPS), which is allosterically regulated by the end product, l-lysine (lysine). Given that lysine is a common nutritionally limiting amino acid in cereal crops, there has been much interest in probing the regulation of DHDPS. Interestingly, knockouts in Arabidopsis thaliana of each isoform (AtDHDPS1 and AtDHDPS2) result in different phenotypes, despite the enzymes sharing > 85% protein sequence identity. Accordingly, in this study, we compared the catalytic activity, lysine-mediated inhibition and structures of both A. thaliana DHDPS isoforms. We found that although the recombinantly produced enzymes have similar kinetic properties, AtDHDPS1 is 10-fold more sensitive to lysine. We subsequently used X-ray crystallography to probe for structural differences between the apo- and lysine-bound isoforms that could account for the differential allosteric inhibition. Despite no significant changes in the overall structures of the active or allosteric sites, we noted differences in the rotamer conformation of a key allosteric site residue (Trp116) and proposed that this could result in differences in lysine dissociation. Microscale thermophoresis studies supported our hypothesis, with AtDHDPS1 having a ~ 6-fold tighter lysine dissociation constant compared to AtDHDPS2, which agrees with the lower half minimal inhibitory concentration for lysine observed. Thus, we highlight that subtle differences in protein structures, which could not have been predicted from the primary sequences, can have profound effects on the allostery of a key enzyme involved in lysine biosynthesis in plants. DATABASES: Structures described are available in the Protein Data Bank under the accession numbers 6VVH and 6VVI.


Assuntos
Arabidopsis/enzimologia , Hidroliases/metabolismo , Lisina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Hidroliases/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Conformação Proteica
15.
Antibiotics (Basel) ; 9(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961699

RESUMO

The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance.

16.
Dalton Trans ; 49(36): 12820-12834, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32897283

RESUMO

A post-synthetic modification and metallation procedure has been used to prepare a family of heterobimetallic Au(i)-Ag(i) and Au(i)-Hg(ii) complexes featuring either symmetrical or asymmetrical bis-N-heterocyclic carbene ligands with methylene or ethylene linker groups. This synthetic approach is versatile and allows for the synthesis of heterobimetallic complexes bearing asymmetrical ligands that differ in the nature of the NHC wingtip substituents (dimethyl, diethyl or ethyl-methyl) and for the selective placement of the different metal ions. The synthesised complexes were characterised using 1H and 13C NMR spectroscopy and high resolution mass spectrometry (HR-MS) and in the case of complexes 4a, 5b and 8b by X-ray crystallography. The complexes of the methylene linked bridging ligands display conformational isomerism in solution and the conformations adopted by selected compounds were examined using variable temperature (VT) 1H NMR studies. The antibacterial properties of the heterobimetallic Au(i)-Ag(i) complexes in addition to the corresponding homobimetallic Ag(i)2, Au(i)2 complexes were evaluated against clinically relevant Gram-positive and Gram-negative bacterial strains. The homobimetallic Au(i)2 complex and precursor pro-ligand displayed no antibacterial activity up to 256 µg mL-1, whereas the homobimetallic Ag(i)2 was active against all Gram-positive and Gram-negative bacterial strains tested (MIC = 8-32 µg mL-1). Interestingly, both Au(i)-Ag(i) heterobimetallic complexes displayed similar broad-spectrum activity (MIC = 4-32 µg mL-1) to the Ag(i)2 homobimetallic complex.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Metais Pesados/química , Metano/análogos & derivados , Antibacterianos/química , Técnicas de Química Sintética , Complexos de Coordenação/química , Cobre/química , Ouro/química , Mercúrio/química , Metano/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Prata/química
17.
J Fungi (Basel) ; 6(3)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847065

RESUMO

Plant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family. Mature defensins are typically 46-50 amino acids in length and are enriched in lysine and/or arginine residues. Examination of a database of approximately 1200 defensin sequences revealed a subset of defensin sequences that were extended in length and were enriched in histidine residues leading to their classification as histidine-rich defensins (HRDs). Using these initial HRD sequences as a query, a search of the available sequence databases identified over 750 HRDs in solanaceous plants and 20 in brassicas. Histidine residues are known to contribute to metal binding functions in proteins leading to the hypothesis that HRDs would have metal binding properties. A selection of the HRD sequences were recombinantly expressed and purified and their antifungal and metal binding activity was characterized. Of the four HRDs that were successfully expressed all displayed some level of metal binding and two of four had antifungal activity. Structural characterization of the other HRDs identified a novel pattern of disulfide linkages in one of the HRDs that is predicted to also occur in HRDs with similar cysteine spacing. Metal binding by HRDs represents a specialization of the plant defensin fold outside of antifungal activity.

18.
Commun Biol ; 3(1): 478, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859965

RESUMO

Early studies of the free-living nematode C. elegans informed us how BCL-2-regulated apoptosis in humans is regulated. However, subsequent studies showed C. elegans apoptosis has several unique features compared with human apoptosis. To date, there has been no detailed analysis of apoptosis regulators in nematodes other than C. elegans. Here, we discovered BCL-2 orthologues in 89 free-living and parasitic nematode taxa representing four evolutionary clades (I, III, IV and V). Unlike in C. elegans, 15 species possess multiple (two to five) BCL-2-like proteins, and some do not have any recognisable BCL-2 sequences. Functional studies provided no evidence that BAX/BAK proteins have evolved in nematodes, and structural studies of a BCL-2 protein from the basal clade I revealed it lacks a functionally important feature of the C. elegans orthologue. Clade I CED-4/APAF-1 proteins also possess WD40-repeat sequences associated with apoptosome assembly, not present in C. elegans, or other nematode taxa studied.


Assuntos
Apoptose , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes de Helmintos , Camundongos , Filogenia , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
19.
Pest Manag Sci ; 76(12): 3896-3904, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32506606

RESUMO

There are three amino acid biosynthesis pathways that are targeted by current herbicides, namely those leading to the production of aromatic amino acids, branched chain amino acids and glutamine. However, their efficacy is diminishing as a result of the increasing number of resistant weeds. Indeed, resistance to most classes of herbicides is on the rise, posing a significant threat to the utility of current herbicides to sustain effective weed management. This review provides an overview of potential herbicide targets within amino acid biosynthesis that remain unexploited commercially, and recent inhibitor discovery efforts. Despite contemporary approaches to herbicide discovery, such as chemical repurposing and the use of omics technologies, there have been no new products introduced to the market that inhibit amino acid biosynthesis over the past three decades. This highlights the chasm that exists between identifying a potent inhibitor and introducing a commercial herbicide. The unpredictability of a mode of action at the systemic level, as well as poor physicochemical properties, often contribute to a lack of progression beyond the target inhibition stage. Nevertheless, it will be important to overcome these obstacles for the development of new herbicides to protect our agricultural industry and ensure food security for an increasing world population. © 2020 Society of Chemical Industry.


Assuntos
Herbicidas , Aminoácidos , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas , Controle de Plantas Daninhas
20.
FEBS J ; 287(17): 3733-3750, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32412687

RESUMO

Premature programmed cell death or apoptosis of cells is a strategy utilized by multicellular organisms to counter microbial threats. Tanapoxvirus (TANV) is a large double-stranded DNA virus belonging to the poxviridae that causes mild monkeypox-like infections in humans and primates. TANV encodes for a putative apoptosis inhibitory protein 16L. We show that TANV16L is able to bind to a range of peptides spanning the BH3 motif of human proapoptotic Bcl-2 proteins and is able to counter growth arrest of yeast induced by human Bak and Bax. We then determined the crystal structures of TANV16L bound to three identified interactors, Bax, Bim and Puma BH3. TANV16L adopts a globular Bcl-2 fold comprising 7 α-helices and utilizes the canonical Bcl-2 binding groove to engage proapoptotic host cell Bcl-2 proteins. Unexpectedly, TANV16L is able to adopt both a monomeric and a domain-swapped dimeric topology where the α1 helix from one protomer is swapped into a neighbouring unit. Despite adopting two different oligomeric forms, the canonical ligand binding groove in TANV16L remains unchanged from monomer to domain-swapped dimer. Our results provide a structural and mechanistic basis for tanapoxvirus-mediated inhibition of host cell apoptosis and reveal the capacity of Bcl-2 proteins to adopt differential oligomeric states whilst maintaining the canonical ligand binding groove in an unchanged state. DATABASE: Structural data are available in the Protein Data Bank (PDB) under the accession numbers 6TPQ, 6TQQ and 6TRR.


Assuntos
Proteínas Reguladoras de Apoptose/química , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas não Estruturais Virais/química , Yatapoxvirus/fisiologia , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...